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I. Introduction

As is well known, the class of linear dynamical systems with white

gaussian driving and observation noises is particularly appealing in that

optimal estimation and control systems can be readily determined and are

easily implemented (perhaps with the aid of a digital computer). Un-

fortunately, there exists no such "nice" theory for general finite-

dimensional nonlinear systems, and until recently most nonlinear estimation

problems were "solved" by various types of linearization and vector

space approximation methods.

Recently, a great deal of effort has gone into studying a class

of nonlinear systems that possesses a great deal of structure itself --

the class of bilinear systems. Several authors have been able to devise

analytical techniques for such systems that are as detailed and as power-

ful as those for linear systems. Moreover, the mathematical tools behind

bilinear system analysis include not only many of the vector space

techniques that are so valuable in linear system theory but also a number

of tools drawn from the theories of Lie groups and differential geometry.

This points out the necessity of viewing the dynamical system of interest

in its most natural setting, rather than forcing it into the vector

space framework.

Both the Lie theoretic and vector space settings have proven to

be useful in the study of bilinear estimation problems, and a number of

important and illuminating results have been uncovered. It is the pur-

pose of this paper to explain the practical and mathematical importance

of these results. In Section II we view the basic mathematical formulation
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of interest to us, and in Sections III-V we discuss several important

practical problems that fall within this framework. These include a

large class of synchronous communication problems, the problems of

altitude estimation and the tracking of an orbiting vehicle, and the

estimation of pollutant concentrations in a diffusive atmosphere subject

to random wind effects and fluctuations in the source rate. These by

no means cover all of the potential applications for our bilinear esti-

mation results, but they do indicate the range of problems that can be

considered. We refer the reader to the references for other applications.

In SectionsVI-VIII we review the techniques that have been devel-

oped for bilinear estimation. In Section VI we describe a class of

bilinear systems for which complete analysis is possible, and we display

the optimal, nonlinear, finite-dimensional estimation equations for an

example. The Lie-theoretic significance of these results is also dis-

cussed. In Section VII the use in estimation system design of harmonic

analysis on groups is explored in the context of synchronous communication

and orbital tracking. This represents a potentially powerful tool in the

design of high performance, implementable estimation systems. A second

approximation method, based on the truncation of the cumulants of a

random process, is studied in Section VIII. This approach is more closely

related to the usual vector space techniques.



II. Stochastic Bilinear Systems

In this section we briefly describe the several classes of

stochastic equations that will be considered in the remaining sections

of this paper. The basic deterministic bilinear equation considered in

the literature [1] - [9] is

. N
x(t) =[A + I u.(t) A. x (t) (2.1)

i=l

where the A. are given n x n matrices, the u. are scalar inputs, and x
1 1

is either an n-vector or an n x n matrix. As discussed in [1], the

additive control model

. N
x(t) = [B + u.(t) Bi x (t) + Cu(t) (2.2)

i=1

(here u is the vector of the u.) can be reduced to the form (2.1) by
1

state augmentation. Also, if we apply the bilinear feedback law

u.(t) = v.(t) Z. (x(t)) + (t) (2.3)
1 1 1 1

where v. and i are scalars, and £. is a scalar-valued linear function
1 1 1

of x, our system equation becomes

* N
x(t) = [A0 + i (i(t) ti(x(t)) + Ui(t))Ai] x(t) (2.4)

i=1

which involves products of state variables. By including several feed-

back paths, we can obtain essentially arbitrary polynomials in the state

variables.

In this paper we will consider equations such as (2.1) in which

the u. are stochastic processes. Such systems have become considered by1

several authors [9] - [27]. We refer the reader to [10] - [16] for

3-
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detailed discussions of the properties of such stochastic models.

One must be careful in considering stochastic versions of (2.1).

For instance, if u(t) is a vector zero mean white noise with

E[u(t) u(s)] = R(t) 6 (t-s) (2.5)

the Ito stochastic differential analog of (2.1) is

N N
dx(t) = {[A + i R. (t) A.Adt + A.dv. (t)} x(t) (2.6)

2 i3l 1

where v is the integral of u (i.e., it is a Brownian motion process).

We define L = {AiLA to be the matrix Lie algebra generated by
i LA

N
{A. } -- i.e., it is the smallest subspace that contains the {A.} and1 .1

1=o

is closed under the commutator product

[l, M'2 ] = M1l M2 - M2 M (2.7)

One can show that in the deterministic case with x an n x n matrix, if

x(o) is an element of the matrix Lie group

B B B
G = {exp L} = {e e 2 ... em I B. 6 L} (2.8)

G I

then x(t) is an element of G (for all t > 0). In order to make a similar

statement in the stochastic case when u is a white noise, we must include

a correction term, as indicated in (2.6).

Another case of considerable importance arises if u is generated

by a finite dimensional linear diffusion process
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d (t) = F(t) (t) dt + G(t) dw(t) + t(t) dt (2.9)

u(t) = H(t) (t) (2.10)

where a, F, G, and H are known and w is a standard Brownian motion process

(E [dw(t)dw'(t)] = I dt). In this case, x by itself is not a Markov pro-

cess, but the pair (x, C) is. Augmenting the state with C, we obtain a

stochastic equation of the form (2.4), where the v. = 1 and some of the
1

. are white noises while the others are zero (see several examples in
1

the following sections). We note that one can show [16], [17] that in

this case no correction term need be added to (2.4). Also, the right-

hand side of (2.4) does not satisfy the global Lipschitz conditions

often assumed in proving the existence of solutions to I to differential

equations [28], [29]. Again, one can shown [15], [20], [30], [31] that

this causes no problems in the case when (2.4) arises from (2.1) driven

by the colored noise (2.9) - (2.10).

In the remaining sections of this paper, we will consider the

estimation of processes described by stochastic bilinear equations of

the types just discussed. We now briefly describe the various types

of measurement processes that will be considered. We also refer the

reader to the references [16] - [27] for more on these estimation pro-

blems.

One very important measurement process consists of linear

measurements corrupted by additive noise

dz(t) = L(x(t))dt + dv(t) (2.11)

where L is a linear operator (recall X is either an n-vector or an n x n
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matrix) and v is a Brownian motion process. A second observation model is

the "multiplicative measurement noise" case

Z(t) = X(t) V(t) (2.12)

in which Z, X and V are all n x n matrices. The third and final measurement

process is described by a bilinear dynamical equation

N
dz(t) = {[A + 1 R. (t) A.A.] dto 2 i.j-l 3 1 J

N
+ > [l.(x(t)) dt + dv. (t)] A.} z(t) (2.13)

i= 1 1 1

Examples of each of these processes will be given in the next few sections.

We close this section by noting that many but not all of our

results are motivated by considering these estimation problems in the con-

text of Lie group theory. We refer the reader to [1] - [5], [10], [16],

[17], and [20] - [23] for more on this subject.



III. Estimation Problems Arising in Communication Applications

An important problem in a large number of communications appli-

cations [10], [17], [19], [24], [25], [32] - [37] is the processing of

a signal of the form

r(t) = A(t) sin (w t + (t) + v(t))+ N(t) (3.1)
c

where wc is a known carrier frequency, 4 is some type of modulating

information, v is a random phase drift, A is the sinusoidal amplitude,

possibly containing modulating information and/or noise, and N is

additive channel noise. As discussed in [10], [17], [19], [24], [25],

and [34], a number of specific problems that fit into the general form

given by (3.1)can be modeled by equations of the type described in the

preceding section. In this section we illustrate these ideas by

considering several specific examples.

Example 1: We consider a phase tracking problem of importance in radio

navigation systems such as Omega [38]. This problem has been studied

in [24], [25], [32] - [34] and [36]. The solution technique developed

in [24], [25] is discussed in Section VII.

Suppose we receive the signal

z(t) = sin 0(t) + r 2 (t) w(t) (3.2)

where

2It dl/2 s
9(t) = wt + q (s) ds + 0 (3.3)

o

and v and w are independent standard Brownian motions, q(t) > 0,

r(t) > 0, and wc > 0. Also 0 is a random initial condition independent

of v and w. We desire to track the signal phase-- i.e., we wish to

-7-



estimate 8(t) mod 27 given {z(s) I 0 < s < t). Equation (3.2) is, of

course, only formal, since w is white noise. The I to differential

forms of (3.2) and (3.3) are

dO(t) = w dt + q/2 (t) dv(t), 8(o) = 6 (3.4)
c o

dz(t) = sin 8(t) dt + r1/ 2 (t) dw(t) (3.5)

and we take as our optimal estimation criterion the minimization of

E [(1- cos(6(t) - 0(t)) I z(s), 0 < s < t].

Noting that we are essentially tracking a point on the unit

circle S1 in the plane R2 , we can reformulate our problem in Cartesian

coordinates. Let

x I = sin B(t), x2 = cos 8(t) (3.6)

then

dx t) -q(t) dt/2 wc dt + q1/2 (t) dv (t)

(3.7)

dx (t) _-(w cd t + q/2 (t) dv (t)) -q(t) dt/2 x 2(t)

dz(t) = x1(t) dt + r1 / 2 (t) dw(t) (3.8)

which are of the bilinear process - linear measurement type discussed in

Section II. Note that (3.7) describes what appears to be a damped

oscillator; however the damping terms are the correction terms required

by Ito calculus, and one can show that
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E(x (t) + x 2 (t)) = 1 (3.9)

(see [16], [17] for further discussion).

In Cartesian coordinates our estimation problem is to choose

an estimate (x1 (t), x2(t)) on the unit circle - i.e., such that

S2 - 2
x 1(t) + x2(t) = 1 (3.10)

If we use the least squares criterion

J = 1/2 E[(x1 (t) - xl(t))2 + (x2 (t) - x2 (t)) 2 z(s), 0 < s < t] (3.11)

subject to (.3.10),or equivalently subject to

Sxl(t) = sin 0(t), ' 2 (t) = cos 9(t) (3.12)

our criterion reduces to

J = ElR - cos (O(t) - M(t))Iz(s), 0 < s < t] (3.13)

-- i.e. (3.13) represents a contrained least squares criterion. One can

show that

(tit), x2(t t))

( 1(t), 2 (t)) = 2 2 (3.14)

or

S-1 x(tit) (3.15)
e6(t) = tan

x2 (tt)

where
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x.i(tlt) = E[xi(t)Iz(s), 0 < s < t],i = 1,2 (3.16)

Referring to Figure 3.1 we can see the geometric significance of this

criterion. We note that one can show that

P W =vx 2(t t) + x (t t) < 1 (3.17)1 2

and the quantity P(t) is a measure of our confidence in our estimate.

Specifically if e is a normal random variable with variance y, then

(see [16] - [18], [24], [25])

9 = [E(sin 0)]2 + [E(cos 6)] = e- Y / 2  (3.18)

so y = 0 (perfect knowledge of 6) == P = 1

and 7 = = (no knowledge)-===~ P = 0.

Example 2: Consider the demodulation of an FM signal in the presence of

both phase and additive channel noise. Specifically, suppose the received

signal process is

dz(t) = sin (w ct + g t x(s) ds + e 1 / 2 (s) df(s)) dt + r1 /2(t) dw (t)

o o
(3.19)

where x, the modulating information to be recovered, arises from a linear

diffusion process

dx(t) = a(t) x (t)dt + ql/ 2 (t) dv(t) (3.20)

Here f, w, and v are independent standard Brownian motion processes.

Equations (3.19) and (3.20) can be replaced by equivalanet

equations in a manner similar to that used in Example 1. Our state
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equation becomes

dx - -edt/2 (w + gx3)dt + el 1/2dt 0 0 x1

dx2  -(wc + gx3)dt - e1/2dt -edt/2 0 0 x2

dx3  0 0 a ql/2dv x3

dx4  0 0 0 0 x

.1)

dz = x1 dt + rl
/ 2 dw(t) (3.22)

where x3 = x and x4  1 (this is the type of augmentation we use to

"bilinearize" linear systems [1]. Note the products x x3 and x2 x3 in

(3.21).

Example 3: In this example we consider an FM problem with phrase noise

only. This problem was considered in [16] - [19], and we refer the reader

to [19] for further discussions of examples of this type. Suppose we

observe the signal

Zl(t) = sin (wcdt + f h(s) x (s)ds + f q1/2(s) dw(s)) (3.23)
o o

where x is given by (3.20) and w, a standard Brownian motion independent

of x, represents a random phase drift. A number of physical sources for

such noise are discussed in [19]. We note that in standard FM systems

involving limiter-discriminators, additive channel noise is processed in

such a manner as to yield frequency and phase deviations (see [371, [39]).
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Also, such models arise in the problem of tracking drifts in high

quality oscillators used as frequency standards or high-precision clocks

[19], [40], in the problem of recovering velocity information from Doppler-

shifted signals [19], [41].

As discussed in a number of references, given the signal (3.23),

there are methods for generating the additional signal

z2(t) = cos (wct + h(s) x(s) ds + q 1/2(s) dw(s) (3.24)
o o

(see the method described in [19] in which the total phase of (3.23) is

reconstructed with the aid of cycle counters). Defining

Z(t) = (3.25)

-z (t) z2 M

[ t
cos (w t + h(s) x(s) ds) sin (wt + h(s) x(s) as)

o

X(t) =

t t
Lsin (w t + h(s) x(s) ds) cos (w t + h(s) x(s) ds)

. c J c I
(3.26)

q 1/2 t q1/2

cos q dw (dw(s) sin q (s) dw(s)

W(t) = o o

S t q1/2 r t 1/2
-sin q 1 2 (s) dw(s) cos q (s) dw(s) (3.27)

o o

we find that

1/2-qdt/2 (w + hx)dt + q2 dw,,c

:-(w + hx)dt - ql/ 2dw -qdt/2 Ih (3.28)
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which is a bilinear observation equation. Similarly, X and V satisfy

bilinear stochastic differential equations. Also, we have

Z(t) = X(t) V(t) (3.29)

-- i.e. Z can be thought of as a measurement of X in multiplicative noise.

Note that the estimation of X, instead of x, corresponds to tracking,

rather than demodulating, the signal phase.

Finally, we make several comments about the matrix Lie group

on which X, V and Z evolve. This group denoted by SO(2), is the group

of 2 x 2 orthogonal matrices of determinant +1 -- i.e.,

SO(2) = {XIX'X = I, det X = +1} (3.30)

As developed in [16] - [19], each X E SO(2) can be written in the form

Cos sin 0
X = , c [-ir, I (3.31)

-sin e cos 6

and SO(2) is isomorphic (as a Lie group, [42], [43]) to the circle S

Also SO(2) is an abelian Lie group -- i.e.

X Y = Y X X, Y C SO(2) (3.32)

and the multiplication (3.32) corresponds to the mod 2f addition of the

corresponding angles in the representation (3.31). We note that a con-

sequence of the commutativity of SO(2) is the fact that Z can be written

in both the bilinear form (3.28) and the multiplicative form (3.29).

Example 4: As discussed in [17], the real line R1 and the circle Si

are essentially the only abelian Lie groups, since any abelian Lie group
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G is isomorphic to a direct product of a number of copies of each. For

instance, the group D of nonzero complex numbers is isomorphic to
R1 S1

R1 x S under the map

r+iO 1(r, @) -- ) e rR 1, O [-T, ) (3.33)

Consider the R2 process x' = (x1 , x2)

dx(t) = A(t) x(t) dt + B(t) dw (t) (3.34)

where w is a standard two-dimensional Brownian motion, and also consider

the D-valued signal process

Y 1 (t) + iy2 (t)
z(t) = e 1 (3.35)

where

dy(t) = x(t) dt + dv(t) (3.36)

Here v is a 2-dimensional Brownian motion process independent of x. We

note that z satisfies a Complex) bilinear stochastic differential equation

and also that we have the multiplicative form

t
v((t) + v(t) I ((s) + ix2 (s)) ds (

z(t) = e e (3.37)

Thus z is both amplitude and angle modulated, and the noise is a multi-

plicative-lognormal process [19], [44], including both phase and ampli-

tude noise.

We note that the multiplicative lognormal noise process in (3.37)

is an important model in some optical communication problems [44]. In

many cases, changes in the transmission medium -- e.g., turbulence in the
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atmosphere -- cause variations in the refractive index of the air. This

disturbance can be modeled [44] as a multiplicative lognormal noise pro-

cess as in (3.37). Also, if vI and x, are zero, (3.37) is identical to

(3.29) if we observe that the set of unit modulus complex numbers, as well

as SO(2), is isomorphic to S



IV. Estimation of Rotational Processes in Three Dimensions

As we have seen, many communication problems can be placed in the

framework of estimation of processes evolving on the circle S1 -- i.e.,

processes of rotation in one dimension. In this section we formulate

several problems of practical importance involving rotation in three

dimensions. As we shall see in this and in later sections, these problems

are considerably more difficult than the one dimensional problems, since

rotations in three-space do not commute [13], [22], [27], [45], [46].

The problem of estimating and controlling the angular velocity

and orientation of a rigid body has been studied by many authors [9],

[22], [27], [45] - [48] and is of great importance in many aerospace

and inertial navigation applications. Such problems are by no means

trivial, and most of the techniques that have been developed are sub-

optimal in nature. One feature of the rigid body orientation - angular

velocity problem that has received some attention in the past is that

the space of possible orientations is a Lie group [22], [27], [48], and the

combined orientation - angular velocity space is the "tangent bundle"

of the orientation space and thus is a homogeneous space [49]. The

framework of differential geometry and Lie theory has proven useful

in studying rigid body rotation problems. In fact, there are Lie-theoretic

interpretations of four of the most widely used representations of the

attitude of a rigid body -- direction cosines, Euler angles, unit

quaternions, and Cayley-Klein parameters.

We will consider here only the direction cosine description and

refer the reader to [22] and [48] for discussions of the other representa-

tions.
-17-
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The orientation of a rigid body can be specified in terms of

the direction cosines [46] between two sets of orthogonal axes --

one rotating with the body and one an inertial reference frame. The

direction cosines are usually given as a 3 x 3 orthogonal matrix X of

positive determinant-- i.e.

X'X = I det X = +1 (4.1)

The set of all direction cosine matrices forms the matrix Lie group

SO(3) [1], [16], [22]. If the 3-vector E(t) is the (properly coordinatized,

[46]) angular velocity vector of the body with respect to inertial space,

the time evolution of the orientation of the body can be described by the

bilinear equation

3
X(t) = ( Ri)X(t) (4.2)

where X(t) C SO(3) and the R., given by

0 0 0 0 0 1 0 -1 0

R1 = 0 0 -1 R2 = 0 0 0 R3 = 1 0 0

0 1 0 -1 0 0 0 0 0

(4.3)

form a basis for so(3), the matrix Lie algebra associated with SO(3).

It is well known and easy to check that S0(3) is not an abelian

Lie group and, equivalently, that so(3) is not an abelian Lie algebra

(i.e., commutator products are not identically zero). In fact S0(3) is
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a simple Lie group [16], [22], [50], and it is this fact .that makes the

study of dynamics on SO(3) so difficult. Recall that in the SO(2) case

we were able to represent solutions to bilinear equations by terms of

the form

t
X(t) = exp (R f (s) ds) (4.4)

where

R = (4.5)
-1 0

is a basis for the one-dimensional Lie algebra of SO(2). Wei and Norman

151], [52] have shown that one can obtain similar local expressions for

the solution to equations of the form (2.1) but that such solutions are

global only in certain cases -- i.e., if the underlying Lie algebra is

solvable (see [10], [16], [22], and Section VI of this paper for a

discussion of the significance of this statement). As simple Lie algebras

are not solvable, we obtain no such global representation here, and as

we shall see, we must resort to suboptimal methods in the design of

attitude estimation systems. We also note that the local Wei-Norman

representation of the solution of (4.2) corresponds to the Euler angle

description, which is well known to exist only locally (see [22] and

[46], where this fact is related to the phenomenon of "gimbal-lock").

Suppose now that the angular velocity vector in (4.2) is stochastic.

Specifically, we suppose ( satisfies

d(t) = f(t)dt + A(t) C (t)dt + Q1/ 2 (t) dw(t) (4.6)
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where f and Q > 0 are known, (0) is normally distributed, and w is a

standard 3-dimensional Brownian motion process independent of C(0). Here

f can be thought of as a vector of (known) torques acting on the body,

and the Brownian motion term represents random disturbances (e.g., those

caused by noisy responses of control devices, such as reaction jets, that

are used to implement the desired torque f, or the effect of a gravity

gradient).

Note also that the angular velocity equation (4.6) that we have

postulated is simpler than the usual nonlinear Euler equations [46].

Equation (4.6), with suitable choice of f, A, and Q, can be viewed as

a reasonable approximation if: (1) the rigid body is nearly spherically

symmetric (so that the principle moments of inertia are almost equal --

in this case the nonlinear terms in the Euler equations are small and may

be lumped into the random disturbance term); or (2) we linearize Euler's

equations about a nominal (which might be included in the f(t) term);

or (3) we make Q(t) large enough so that the nonlinear effects can be

viewed as process noise.

We now can describe two different measurement processes --

one motivated by a strapdown navigation system, and the other by an

inertial system in which a platform is to be kept inertially fixed.

In a strapdown system, [46] one receives noisy information about either

angular velocity or incremental angle changes. Assuming that the size

of the increment is small, either type of information can be modeled

by the I to equation

dz(t) = C(t)E(t)dt + S 1/2(t) dv(t) (4.7)
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where S > 0 and v is a standard Brownian motion process, independent of

E. This equation is the precise analog of the usual (formal) observation

equation (for rate gyroscopes)

z(t) = C(t)E(t) + v(t) (4.8)

Here v is white gyro noise. Another possible observation model is pro-

vided by integrating gyroscopes, in which case we observe

m(t) = C(t) [ (s)ds + N(t) (4.9)
o0

Here N represents a gyro drift. Usually when using a model like (4.9),

one assumes that the drift is a correlated process. This adds no real

difficulty to the problem, since there are simple techniques for handling

measurements with additive colored noise [53]. In fact, the consideration

of the process (4.9) rather than (4.8) adds no difficulty to the analysis,

and thus we will concentrate on (4.8).

In the usual strapdown system the information (4.7) is processed

by a "direction cosine computer," which produces Z (t), the solution of

dZ(t) = R.d.(t) + (t)R.R.dt Z (4.10)

d t 2 i=1 j=l

Our problem is to use the information supplied by z or Z to compute "good"

estimates of the angular velocity E and the orientation X. Thus, if

we take (4.7) as our basic measurement equation, we have linear observations,

while (4.10) yields a bilinear measurement process.

A second type of observation process is suggested by an inertial

system equippedwith a platform that is to "instrument" (i.e. remain fixed
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with respect to) the inertial reference frame. Suppose we use the

notation b-frame for the body-fixed frame, p-frame for the platform

frame, and i-frame for the inertial reference frame. Letting C (t)

denote the direction cosine matrix of the 8-frame with respect to the

a-frame, we have

X(t) = C.b(t) (4.11)
:1

Also, by noting the relative orientation of the platform and the body

(perhaps by reading of gimbal angles [46], we can measure

M(t) = Cb(t) (4.12)
Let

V(t) = Ci(t) (4.13)

Then V(t) represents platform misalignment -- a drift of the platform with

respect to inertial space due both to drifts in the gyroscopes used to

sense rotation of the rigid body and also to inaccuracies in the

mechanism that rotates the platform relative to the body in order to keep

it inertially fixed. If we wmodel gyro drifts and the other inaccuracies

as Brownian motion processes, a reasonable model for V is as an SO(3)

Brownian motion, [13], [16], [22], [54]:

3 3 3
dV(t) = R.dv .(t) + I Si. (t)RiRjdt V(t) (4.14)

i=l i=l
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where v is the Brownian motion process with Efdv(t)dv'(t)].
= S(t)dt.

Using elementrary properties of direction cosine matrices [46], we have

M~)=bt Cb i~ t  b bi
M(t) = b(t) = C(t) C (t) = Cb(t) [C (t)]' = X(t)V'(t) (4.15)

p 1 p 1 1

(multiplicative observation noise)and, using (4.2) and (4.14) (plus the

fact that R! = -R.), we have the following stochastic differential
1 1

equation for M:

dM(t) = R (t M(t)dt + M(t) [ Ridv.(t) + 1 S (t)RiR dt
I 1 

i ]=

(4.16)

Again, we wish to consider the problem of estimating ( and X given the

observation process M.

In many inertial systems the type of information that is avail-

able is in the form of "pulses" [46] from the gyros. If this is the case,

it is logical to take the incremental equation (4.10) as the basic sensor

equation. Also, for the second observation process, if we take the

incremental gimbal angles as the quantity we observe, equation (4.16)

becomes the basic measurement equation.

Now consider (4.2) with the 3 x 3 matrix X replaced by the 3-vector

x. Assuming that x'(0) x(0) = 1, we have that x'(t) x(t) = l,Vt -- i.e.,

2
x evolves on S2 , the unit sphere in 3-space. The study of random processes

with constant "energy" is of importance in a number of fields -- including

DC to DC conversion [55], statistical mechanics [56], and satellite orbital

analysis [16], [57], [58]. We briefly describe a simplified version of
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a satellite tracking problem of great practical importance.

Consider a satellite in circular orbit about some celestial body,

such as the moon. Because of a variety of effects including anomalies in the

gravitational field of the body, effects of the gravitational fields of

nearby bodies, and the effects of "solar wind", the orbit of the satellite

is perturbed. For simplicity, we assume that the perturbations of the

orbit are tangential only -- i.e. the radial effects are unimportant or

have been corrected for. In this case, a stochastic version of (4.2)

arises. Suppose the angular velocity E of the vehicle with respect to

body can be written the form

E(t) = f(t) + w(t) (4.17)

where f is the nominal orbit ("carrier") angulary velocity and w is a white

perturbation with

E[w(t)w(s)] = Q(t)6 (t-s) (4.18)

The stochastic analog of (4.2) then is

3 3
dx(t) = {[ f.(t)A. + I Q. (t) A.A.]dt

i=l i,j=l1

3
+ A.dw.(t)} x(t) (4.19)

i=l

If we are then given noisy observations of the satellite position

dz(t) = H(t) x(t)dt+. R1/ 2 (t) dv(t) (4.20)

where v is Brownian observation noise independent of x and R(t) > 0, our

problem is to estimate x(t).
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We note that the assumption that the angular velocity perturbations

are white is a simplification. For instance, the anomalies in the moon's

gravitational field are spatially correlated and constitute a random

field [29], [57], [58], which can be estimated [58] from the observed

data (4.20). However, the computations involved in such an estimation

are of such magnitude that they must be computed off-line. The simpler

model (4.19) may lead to simple but accurate on-line tracking schemes

(see Section VII). Also, by including perturbations with time correlation

consistent with the period of the orbit, we may be able to make estimation

systems based on (4.19), (4.20) "smarter" with only minor complications

in tracking system design. We note that (4.19), (4.20) is a direct

S2 analog of the S1 incoherent oscillator tracking problem described in

Example 1 (incoherent orbiters?).

In fact, we can again use the constrained least-squares criterion:

minimize

E[(X(t) - (t)) (x(t) - (t)) z(s), 0 < s < t] (4.21)

subject to

22 t) = t) = 1 (4.22)

It can be shown that, as in the S1 problem,

A

x(t)= x(tt) (4.23)ll tlt) l



V. Estimation of Air Pollution

The problem of estimating the concentration of pollutants in

the air is a vital first step toward the goal of maintaining the air

pollution levels within safe limits. A recently developed stochastic model

for air pollution [63], [64] involves partial differential equations

which, when discretized, become discrete-time bilinear equations

(see [65], [66] for discussions of discrete-time bilinear systems). The

advection-diffusion model of [63], [64], which is a generalization of

the widely-used steady-state Gaussian plume model, accounts for the

continuous fluctuation of meteorological factors by means of stochastic

modeling.

The transportation in air of a single-species pollutant is

approximated by the advection-diffusion equation

1C (x,y,z,t) = - V V C(x,y,z,t) + V(K V C(x,y,z,t))

at c

+ Q c(x,y,z,t) - v-V C(x,y,z,t) + qc(x,y,z,t)

(5.1)

where C is the pollution concentration; C is the mean of C; V and v are

the mean and the zero-mean stochastic component of the wind velocity;

Qc and qc are the mean and the zero-mean stochastic component of the

pollution source rate; and Kc is the eddy diffusivity. For the boundary

conditions associated with (5.1), see [63], [64].

For practical implementation, the advection-diffusion equation

(5.1) is discretized both in space and time, resulting in the finite

dimensional system of equations

-26-
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x(t+l) = [21- A + E (VD) ] x(t) +D + L Qc + F(x(t)) w(t) (5.2)

r(x(t)) = [G(x(t)) L]

v (t)

w(t) = (t)
tqc t ) ]

z(t) = H x(t) + (t) (5.3)

where x(t) is the vector of pollution concentrations in the cells of the

spatial discretization, and A, L, 2(V D) , D, G, H, and I (=identity) are

known constant matrices. The noise processes v(t), qc(t), and E(t) are

assumed to be independent, Gaussian, and white. Since F (x(t)) is linear

in x(t), the system (5.2) is obviously of the discrete-time bilinear form,

and it is driven by fluctuations in the wind velocity and source rate.

We will not consider specific estimation schemes for the system

(5.2) - (5.3); however, we remark that the cumulant method of Section VIII

may provide a useful suboptimal approach to the problem. In [63], [64]

it is assumed that F (x(t)) is slowly varying, and a suboptimal filter,

which employs a non-Riccati estimation algorithm using incremental

covariance [67], [68], is designed for the resulting "linear" system.

Finally, we refer the reader to [80] for a discussion of

deterministic bilinear systems described by partial differential equations.

Also, if we discretize in space only, we obtain continuous-time bilinear

equations, and the techniques of Sections VI and VII may be applicable.



VI. Finite Dimensional Optimal Nonlinear Estimators

In this section we will consider the estimation problem for a class

of systems evolving on nilpotent or solvable Lie groups [10], [16], [22],

[69]. The equations we will consider are motivated by the strapdown

navigation system of System IV --

d (t) = F(t) ( (t) dt + Q 1/2(t) dw(t) (6.1)

n
X(t) = (A + &.(t) A.) X(t); X(o) = I (6.2)1 1i=l

dz(t) = H(t) ( (t)dt + R1/2(t) dv(t) (6.3)

where E (t) is an n-vector, X (t) is a k x k matrix, z (t) is a p-vector,

w and v are independent standard Brownian motion processes, Q > 0,

R > O, and ( (0) has a Gaussian density independent of w and v.

The criterion for the optimal estimate X (tit) will be the

minimization of

E [tr {(X(t) - X(t))' (X(t) - X(t))}iz(s), 0 < s < t},

where "tr" denotes trace. It is well known [28] that this minimum-variance

estimate is given by the conditional mean

X(tjL) = Et[x(t)] = E [X(t)Iz(s), 0 < s < t},

In general, the computation of X (tit) requires an infinite-dimensional system

of equations, and approximations must be made for practical implementation

(see the related comments in [28] and Sections VII and VIII). Thus it is

of interest to study systems for which the optimal minimum variance estimator

is dimensional (and thus implementable on-line with a digital computer).

-28-
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Throughout this section, we assume that {A I }LA, the smallest Lie

algebra which contains {A i , i = 0, 1,...,n},is solvable; this is 
equivalent

to the existance of a complex nonsingular k x k matrix P such that, for

-1
all elements A in {A ILA' the matrix P A P is in the upper triangular

form where a.. = 0 for i > j and the other elements are arbitrary (see
1)

[69] for further details on solvable Lie groups and Lie algebras). Thus

we will assume that the matrices {A.} in (6.2) are in upper triangular
1

form; this implies that X evolves on the solvable Lie group G (k) of

nonsingular upper triangular k x k matrices.

First we consider the Lie subgroup GN(k) of upper triangular

k x k matrices with ai.. = 1, i = 1, ... , k; this is a nilpotent Lie group.

The corresponding nilpotent Lie algebra LN(k) consists of the strictly

upper triangular k x k matrices. In this case, because the Peano-Baker

series is finite, X (t) can be expressed in closed form in terms of a

finite number of integrals in which the integrands are products of the

components of . We can show that, for the system (6.1) - (6.3)

evolving on GN(k), the optimal estimate X(tIt) can be computed by a finite

dimensional nonlinear filter. The starting point of the derivation is a

closed-form expression for X (t).

For simplicity, the filter will only be derived for n = k = 3,

but the result can also be proved by induction for higher-order systems.

Let A = 0 and
0

0 1 0 0 0 1 0 0 0

Al 0 0 0 A2 = 0 0 0 A3 = 0 0 1
0 0 00 0 0 0 0 01

(6.4)

Then {Al , A2 , A3 is a basis for LN (3). The solution of (6.2) can be

expressed in closed form as
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tt :t 0O
1 f f(()d f (0) d+ f 1 1 1 3 (2)do 2 do1 -

o o oo00

t
x(t) = 0 1 3 3 () da

0 0 1

(6.5)
Before stating the major theorem concerning the computation of

X(t It), we need two preliminary results.

Lemma 6.1: Consider the linear system (6.1), (6.3), and define

(for 0 < t)
A

Et[~()] = E(aIt) = E[((a) I z(s), 0 < s < t] (6.6)

Then the conditional cross-covariance matrix

P(0 , 1 2 t) = E[(a 1 ) - (0 1 1t)) (E((2) - (a 21t))Iz(s), 0 < s < t]

(6.7)

is nonrandom -- i.e., it is independent of {z(s), 0 < s < t}.

The proof of Lemma 6.1 is based upon the fact that the error co-

variance matrices for the linear Gaussian estimation and smoothing problems

are nonrandom [71]. This lemma allows the off-line computation of

P(aI , 0 2, t) via Kwakernaak's equations [72] (for a < 2 )

P(a I , 02, t) = P(2) ' 2, 1)

-P(a 1 ) 1ft T' (Ta) H' (T) R- (T) H(T) T (T, O2 )dT] P(02)
(028

(6.8)
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d T(t,T) = [F(t) - P(t)H' (t) R-1 (t)H(t)] T(t,T); T(T,T) ='I (6.9)dt(69

where the Kalman filter error covariance matrix P(t) = P(t, t, t) is com-

puted by the Riccati equation

-1
P(t) = F(t) P(t) + P(t) F'(t) + Q(t) - P(t)H'(t) R -(t) H(t) P(t)

(6.10)

Lemma 6.2: The conditional cross-covariance satisfies

P(O, t, t) = K(t, a) P(t) (6.11)

where

d K'(t,a) = -[F'(t) + P- 1(t) Q(t)] K'(t, a); K'(a, a) = I (6.12)
dt

This lemma follows easily from some identities in [73]. Equation

(6.12) implies that K'(t, a) is a transition matrix satisfying the semi-

group property

K'(t, a) = K'(t, s) K' (s, a) (6.13)

These properties of P(a, t, t) are crucial in the derivation of the

next theorem, which states the major result concerning the computation

of X(t it).

Theorem 6.1: Consider the system of equations (6.1) - (6.4).

The conditional expectation X(tjt) is generated by the following finite-

dimensional nonlinear filter. First, augment the state of the linear

equation (6.1) by writing
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dE (t) F(t) 0 0 0 (t)

dn (t) I 0 0 0 n (t)

da(t) /K(ta)eda 0 -F'(t) + P1 (t)Q(t) o (t t

-1d (t) 0 ele 3  0 -[F(t) + P (t)Q(t)] (t)

1/2
Q Wt

0
+ dw(t) (6.14)

0

0

TI(0) = (0) = a(0) = 0 (6.15)

dz(t) [Ht) 0 0 0] E(t) dt + R1 / 2 (t) dv(t) (6.16)

n (t)

a (t)

8 (t)

where K(t, a) is given by (6.12), and P(t) is given by (6.10). Here

th thK. (t, a) denotes the j-h row of K(t, a) and e. is the i-th unit vector inJ 1

R3"

Then the Kalman filter [28] for (6.14) - (6.16) yields the

conditional expectations (t It), ^(tjt), a(tlt), and 8(t t). The con-

ditional expectation X(t it) is computed by

A AI
1i(t t) n2(t~t) + (tlt)

X(tlt) = 0 1 3(tt) (6.17)

0 0 1
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where

A t

dy(tlt) E(tt) 3 tl t) + f P1 3 (t, a, t) do] dt
0

A -1 A

+ [al'(tlt) + $'(tlt)] P(t) H'(t) R-l(t) [dz(t) -H(t) ( (tlt)dt]

y(010) = 0 (6.18)

Proof: All the terms in (6.17) result from linear filtering theory

[28], except for y(tlt). In the derivation of (6.18) we will frequently

use a version of Fubinis theorem [74] which allows us to interchange

integrals with conditional expectations. Notice that

Y(tlt) = Et I 1 El() E3(a2) do2 dl1 ] (6.19)
o o

Thus if we define y by

dy(t) = [E(t) E3 () da] dt
0

= El(t) 3T1(t) dt (6.20)

Y (0) = 0

then Kushner's equation [28] yields the conditional expectation

dy(t.t) = Et[(E1 (t) p3 (t)] dt

+ {Ety(t)E'(t)] -y(tjt) E(tlt)} H'(t)R-l(t) [dz(t) - H(t) E (tjt) d

(6.21)

From the definition of P(Oi, 02, t) it follows that
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A t
Et 1(t) n(t)] = 1 (tIt) nI3 (tlt) + P1 3 (t, a, t) do (6.22)

Considering the second term in (6.21),

A

Et[y(t) i(t)] - y(t It ) Ei (t It )

= 1i {Et[l ()1 3(a2) i (t)] - i (tit) Et[ 1 (a 1 ) 3(o2)]} do 2 da 1
o o

= {Pli (O1 , t, t) E t[3(a2) + P3 (2, t, t) Et [ 1(oi1)l]} do2d
0 0

(6.23)

where the last term in (6.23) is a result of the definition of P(OI , 02, t)

and the expansion of the third order moment of a Gaussian distribution

[75].

Thus by Lemmas 6.1 and 6.2

tA
Ety(t) ' (t)] - (tIt) Ea(tIt)

= (t {K1  1 ) Et E 3 (W2 )] + K 3 (t, 2) Et K 1 (al)]} P(t) do 2do 1

= Et[f K1 (t, a1 n3 (1) do1 + (o 1) K 3 (t, 02) dao2do1] Pt)
o0

(6.24)

=(Et[8'(t)] + Et[o' (t)]) P(t) (6.25)

The fact that equation(6.14) for a and 0 provides a realization of the

argument in (6.24) is a direct consequence of (6.12)

Further insight into the structure of the optimal nonlinear filter

of Theorem 6.1 is provided by the equivalent formulation
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3 t

dX(tlt) =( A (t t) X(tjt) + E13 P 1 3 (t, a, t) da} dt

i=l

0 K l(t, a) K2(t, a)

t^^

+f 0 0 K3(t, T) da + (c'(tlt) + $'(tjt))E13

o0
o 0 0

-l A

.P(t)H'(t) R-l(t) [dz(t) - H(t) E(tlt)dt] (6.26)

where E. has a 1 as its (i, j) th element and zeros elsewhere. Thus the
1)

filter for X(t t) contains a model of the original system (6.2) driven

by the innovations process dv(t) = dz(t) - H(t) E (tit) and the outputs

of a linear filter (see the block diagram in Figure 6.1).

In addition to providing the optimal minimum variance estimate,

it can be shown that the filter of Theorem 6.1 contains fewer states

than the extended Kalman filter [28] for the same system. This is due to

the on-line computation of the "approximate" error covariance matrix in the

extended Kalman filter.

Theorem 6.1 can be extended in various ways. First, it can be

extended to systems of the form (6.1), (6.3), and

a1  1 2

Y(t) = 0 a 2  3 (t) Y(t); Y(0) = I (6.27)

S0 a 3 (t)J

with nonrandom diagonal terms a. ; such systems evolve on the solvable
Lie group Gs(3)~1 Second, the results are valid for systems evolving on

Lie group G (3). Second, the results are valid for systems evolving on
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Fig. 6.1 Block Diagram for Optimal Nonlinear Filtering on GN( 3 )



GN(k) and for systems with nonrandom diagonal terms evolving on Gs (k).

Finally, the results may be extended to observations of the form of (2.12)

or (2.13); in these cases, it can be shown [20], [26] that the observations

are, in a certain sense, "conditionally" linear. For all of these ex-

tensions of Theorem 6.1, it can be shown that the optimal minimum

variance filter is finite dimensional.



VII. The Use of Harmonic Analysis in Suboptimal Filter Design

A very important result of harmonic analysis states that the

eigenfunctions of the Laplace-Betrami operator on a compact manifold

2
M are a complete set of functions in L (M, p) (where p = Haar measure)

[43], [761. In this section we will develop suboptimal estimation

techniques for bilinear systems evolving on compact manifolds by

employing an approximation to the conditional density which is based on

these eigenfunctions.

First consider Example 1 of Section III which evolves on the Lie

group S , described by (3.4) - (3.5) or (3.7) - (3.8). As discussed in

[24], the optimal (constrained least-squares) filter is described as

follows. The conditional probability density of 9 given {z(s), 0 < s < t}

may be expanded in the Fourier series (notice that the trigonometric

polynomials are eigenfunctions of the Laplacian on S)

4 ine
p(0, t) = c (t) e (7.1)

nn=-O

where

1 -iOtc (t) = Ee-int Iz(s), 0 < s < t]
n 21t

= b (t) - ia (t) (7.2)
n n

Then

2
dcn(t) = -1inw + -- q(t)]c (t)dt

2

(c  (t)-C (t))+ 2c (t) Im(c ( d z (t )+2 TIm (c (t))dt
+ + 27rc nt)MMc(t)W

2i r(t)

-38- 
(7.3)
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~ -16(t) = tan (al(t)/bl(t)) (7.4)

1
Since c =- and c = c* (where * denotes the complex conjugate),0 2r -n n

we need only solve (7.3) for n > 1. The structure of the optimal filter,

which is illustrated in Figures 7.1 and 7.2, deserves further comment

(recall that c = b - ia ). The filter consists of an infinite bank ofn n n

filters, the nth of which is essentially a damped oscillator, with

oscillator frequency nw , together with nonlinear couplings to the other

filters and to the received signal. Notice, however, that the equation

for cn is coupled only to the filters for cl, cn-1, and cn+.l This fact

will play an important part in our approximation.

In order to construct a finite-dimensional suboptimal filter,

we wish to approximate the conditional density (7.1) by a density

determined by a finite set of parameters. Several examples of "assumed

density" approximations for this problem are discussed in [16], [25], but

the most useful involves the assumption that p(8, t) is a folded normal

density (see [16], [17], [24]) with mode n(t) and "variance" y(t):

+.
1 -n2 y(t)/2 in(8-n(t))

p(0, t) = -- e (t)= F(6; n(t), y(t)) (7.5)
27 n=--

This density is related to the normal density in the following way: if x

is a real random variable with density N(a;n,y), then 6 = x mod 2w has

the density

+ N(
F(a;,y) = I N(a + 2nr;n,y) (7.6)n=-
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Fig. 7.1 Illustrating the Form of the Infinite Dimensional Optimal
Filter of Example 1, Section Ml
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Fig. 7.2 Diagram of the c n Filter shown in Fig. 7.1



-42-

--i.e., we "fold" N(a;,y) around the circle. We note that the folded

normal density is the solution of the standard diffusion equation on the

circle (i.e., it is the density for S1 Brownian motion processes) and

is as important a density on S as the normal is on R

In this case, if c1 has been computed and if p(O, t) satisfies

(7.5), then cN+1 can be computed (for any N) from the equation

2
cN+1 = (27) (N+l)2-1 1C N(N+l)c (N+l) (7.7)

Thus we can truncate the bank of filters described by (7.3) by approximating

cN+1 by (7.7) and substituting this approximation into the equation for

cN. This was done for N=l in [25]; the resulting suboptimal filter

equations are

(-27ra 1) 1 3 4 4 2
al = (w b - ) + [- (- - 8Tr (b - a )-iac 1 2 1 r 2 27 1 1 1

(7.8)

(z-2wala 1Tr 3 2 2S = -(wcal + bl) r 83alb (a + b) -2ab] (7.9)1 ci 2 1 r 1 11 1 1 1

6 = tan (al/b1 ) (7.10)

In [25], this Fourier coefficient filter (FCF) was compared to a phase-

lock loop [32] and to the Gustafson-Speyer "state-dependent noise filter"

(SDNF) [34]. The FCF performed consistently better than the other systems,

although the SDNF performance was quite close.

Similar analyses and "assumed density" approximations can be

applied to the other examples in Section III; the reader is referred to
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[25], [28], [35], and Section VIII of this paper.

Motivated by the success of the previous example evolving on

S, we will now extend these results to the system (4.19) - (4.20)

2
evolving on the sphere S2 . Following [3], [9], [10], we define the

(+2)-vector x[p ] consisting of the pth order moments (homogeneous

polynomials) in (Y,, x 2 , x3):

P-P -P 2  pl p2  3  3
( 3  x x2  x3  ; i=l Pp; pi > 0 (7.11)1 2 3 1 13/-

P, 2 P3i=

If y satisfies the linear differential equation

(t) = Ay(t) (7.12)

then y p ] satisfies a linear differential equation

[ p ] (t) = A [P]y [p ] ( t )  (7.13)

We regard this as the definition of A . It can be shown that if x

satisfies (4.19), then x [p ] satisfies

[P]3 [p] 3 [p]lp
dx (t) = f.(t) A. + Q. ij.(t) A. A. x P ] (t) dt

i=1 i,j=1l

+ A.[P] x [ p ] (t) dw.(t) (7.14)
i=1

The optimal (constrained least-squares) filter is given by the

infinite set of coupled equations
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t pl3 [] 3 l1p t l
dEt[x[P](t)] = fi(t)Ai[p] + Qij(t) A. [P]A.p] Et[xP (t)] dt=1i,j=1

+ {EtIx[P] (t)x'(t)] - E t[x[P (t)] E t[x',(t)]}

* H'(t) R-1(t) [dz(t) - H(t) E t[x(t)] dt (7.15)

Mt Ill
x(t) = E(t) [x[l] (t)] = x(tjt) (7.16)

llEt[x t)] I I ll (tlt)II

The structure of this filter is quite similar to that of (7.3) - (7.4) --

i.e., it consists of an infinite bank of filters, and the filter for xp

is coupled only to those for x and x [p + ]

The similarities with the previous example are further illuminated

by considering the spherical harmonics [77], [78], which constitute an

2orthonormal basis for the eigenfunctions of the Laplacian on S. We

introduce polar coordinates (6, 0) on S , where 0 < 6 < w, 0 < 4 < 27,

by defining

xI = cos 6; x2 = sin 6 cos 4; x3 = sin 6 sin 4 (7.17)

The normalized spherical harmonics Ytm(0, f) are defined by [77]

m V(t-m) I (2t+l) 1/ 2

(6, €) = (-)m (-(m)I 1/ Ptm(cos 6) ein (7.18)

Y,-m(, ) = (-)m (e,m) (7.19)

for Z = 0, 1, ... and m = 0, 1, ..., t, where Pfm(cos 0) are the associated
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Legendre functions.

According to the remark at the beginning of this section, any
S2

square-integrable function on S2 can be expanded in a series of the form

f(e,) = I C m Y m(, *) (7.20)
Z=O m=-Z

where

2 Tr

Cm = 0 f f Y (,) f(e, ) sin OdOd (7.21)
o o E

In particular, the conditional probability density function for our
S2

estimation problem on S2 can be expanded via the series

p(8,c,t) = . Cm(t) Ytm(6, ) (7.22)
£=o m=-Z

where

C (t) = E[Ym ((t), (t)) z(s), 0 < s < t] (7.23)

The set of coefficients {COm(t)} for t = 1, ... , k and m = -Z, ... ,

is equivalent to the set of conditional moments {Et[x [P (t)]} for

p = 1, ..., k (see [3] for a detailed description of this equivalence).

Thus a filter which generates {Ctm(t)} is equivalent to (7.15); in

fact, it can be shown that such a filter consists of an infinite set

of equations (similar in form to (7.15)),and the equation for CLM is coupled

only to those for {Cm; =L-l, L, L+l; m=-C,... ,}. The optimal estimate is

~ 10 11  11  11 11
x'(t =[95co (t), - c n (t) + *~ (t)), i (c 1 (t) -c n1 (t)]

x'2(t) =

V-(C2 (t) + 2 C (t) 12) 1/ 2

10 11 (7.24)
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This filter is completely analogous to the S1 filter (7.3) - (7.4).

We will again employ an "assumed density" approximation in order

to obtain a finite-dimensional filter. An S2-analog of the folded normal

density is obtained as the solution to the standard diffusion equation on

2

ap (e,4,t) -1 (t 2
tp(0 ) 1 (t) V 2 p(0, ,t) = 0 (7.25)

at 2

The Green's function for (7.25) is given by the "bilinear series" [79]

0-£(£+1) j (s)ds
G(0,(,t; n,V,T) = 1 , Y m(( 0 ,0 ) Yfm (s,s) e T

&=0 m--Z (7.26)

This is the solution to (7.25) with initial condition equal to the

singular distribution concentrated at (n,v).

Thus by analogy with (7.5), we assume that the conditional density

for the S2 estimation problem is of the form

p(,I,t) = Ym(0) Y m (n(t),v(t)) e2 (Z+1) y(t) (7.27)
Z=O m=-e

In order words, Ctm(t) (as defined in (7.22) - (7.23) is assumed to be

1

* 2 (t+1)y(t)
Cm(t) = Ym ((t), V(t)) e (+l)y(t) (7.28)

In this case, if C10 and C11 have been computed, then

y(t) = -- log - C1 0 (t) + 21C 1 (t)2 (7.29)
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ci (t)
cos n(t) = 2 10 M (7.30)

Ic (t) + 2 ICl1 (t)12]1/ 2

sin n(t) = [C 0  1C1 1 2 (7.31)
[C2 (t) + 2 C (t) 2 1/2

10 11

If C 11(t) = 0, then the density is independent of v(t); otherwise,

C (t)
e2iv(t) 11 (7.32)

Cll (t)

Then {CN+l,m , m=-(N+1), ... , N+}11 can be computed (for any N) from

1

-(N+1) (N+2) y (t)
CN+lm (t) = Y*N+lm(n(t), V(t))e- (NI) (N+2)y(t) 2 (7.33)
N+1,m N+1-,m

Thus we can truncate the bank of filters for {C&m by approximating

{CN+, m)} via (7.29) - (7.33) and substituting these approximations into

the equations for {CN,m I.

The performance of this suboptimal filter will be tested by

simulation, and the results will be presented in a future report. Other

"assumed densities" will also be studied, including those resulting from

degenerate diffusions or diffusions with unequal drifts around the three

axes [3].

The techniques of this section can in theory be extended to any

compact manifold by employing the eigenfunctions of the Laplace-Beltrami

operator. For example, on the n-sphere Sn these functions are the n-

dimensional spherical harmonics [78]. Since SO(3) is isomorphic (as a Lie
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group) to S 3/{+ I} (see [22], [43]), suboptimal filters for some of the

rotational estimation problems of Section IV can be constructed by

means of sherical harmonics on S3
means of spherical harmonics on S



VIII. A Cumulant Method for Suboptimal Filter Design

As we have seen, we are able to obtain finite dimensional optimal

filters only for certain bilinear estimation problems. In the preceding

section we described how harmonic analysis could be used to design high

quality estimation systems for processes evolving on spheres and, more

generally, on compact manifolds. In this section we describe a design

technique which we call the cumulants method. This approach has been

considered by several authors [10], [59], [60] and is related to

statistical linearization techniques [60] - [62].

We wish to consider the estimation of x(t) given the observation

process z, where these processes satisfy

dx(t) = a(x(t), t)dt + B(x(t), t)dw(t) (8.1)

dz(t) = H(t) x(t)dt + R 1/2(t) dv(t) (8.2)

where a is an n-vector andB an nxm matrix of polynomials in the components

of x, w and v are independent standard vector Brownian motion processes,

and R > 0. All of the random processes considered in the preceding

sections are of the form (8.1) (see Section II). We consider only the

linear observation process (8.2), but the analysis of this section can

also be carried out for bilinear and multiplicative processes of the

forms given by (2.12) and (2.13).

We wish to compute the conditional moments

kI k

mk k (tlt) = E[X 1 (t)...x n (t)Iz(s), 0< s <t] (8.3)
1 .. n x1 n

Recall that these quantities were of direct interest in the various

estimation problems described earlier. For any twice continuously

-49-
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differentiable real-valued function 4 of x, let

$(tIlt) = E[E(x(t)) z(s), 0 < s < t] (8.4)
A

We then have Kushner's stochastic differential equation for [63], [64]:

de = + tr [B 1} dt

^ ̂  -1^
+ [Hx - Hx]' R [dz - Hx] (8.5)

k k

Note that if * is of the form x ...xn  , the right-hand side of (8.5)
n

consists solely of various conditional moments as in (8.3) (see for

example (7.15)). This is a direct consequence of the fact that the right-hand

sides of (8.1) and (8.2) contain only polynomial functions of x.

A major complication with these equations (when * is a moment
(8.3)) is that they are all coupled together (as in (7.15)). The reason

for this is the following: let the order of a moment m l...k be the sum

of the k.. Then, because of the polynomial nature of the various co-
1

efficients, the orders of some of the terms on the right-hand side of

(8.5) are at least one higher than the order of *. Consider the scalar

example

dx(t) = ax2(t)dt + 8x(t)dw(t) (8.6)

dz(t) = x(t)dt + dv(t) (8.7)

Then

dm1 = am2dt + [m2-m ] [dz-mldt] (8.8)

d = [2a 3  2m2]dt + [m3-m2ml] [d-ldt] (8.9)
dfl = [2cai + a in ]dt + mmIEzld](8.9)

2 [MY-m2 1] U-nu.
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dm3 = [3am4 + 382 3]dt + [m4-m3ml] [dz-mldt] (8.10)

From the preceding comments, it is clear that the implementation

of these equations must involve an approximation -- i.e., a truncation

of the infinite set of equations. For several reasons, the direct

truncation method -- setting to zero all moments greater than some

given order -- can cause difficulties. First of all, there is no reason

to expect the higher moments to be small, and in many cases (such as

the Gaussian case) the sequence of moments is unbounded. In addition,

if we use the fact that the moments are the coefficients of the Taylor

series expansion of the characteristic function of x, the assumption that

the higher moments are zero corresponds to assuming that the density for

x is a sum of derivatives of Dirac delta functions [59].

As suggested in [59] and [60], a more useful set of variables is the

set of cumulants, which are the coefficients of the Taylor series expansion

of the logarithm of the characteristic function. For the present dis-

cussion we limit ourselves to the scalar case, although the vector case

can be handled similarly. For a scalar variable the kth cumulant is a

polynomial in the first k moments and, in fact, the first k moments

and the first k cumulants contain precisely the same information. For

example, the first 4 cumulants of the scalar process x(t) in (8.6) are

kl( t) = ml(t) (8.11)

k2(t) = m2(t) - m(t) (8.12)

3
k (t) = m (t) - 3m (t)m +t) + 2ml(t) (8.13)
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2 -2 4k4 (t) = m4 (t) - 3m2 (t) - 4ml(t)m 3 (t) + 12m2(t)m2(t) - 64(t) (8.14)

and we see that k is the mean and k2 is the variance.

As discussed in [59], a reasonable procedure is to set to zero

all cumulants of order higher than some given number. Note that

assuming k. = OVi > 3 is equivalent to assuming that x(t) is Gaussian!

Note also that if we take k (t) = 0, i > M, we can obtain equations for

the corresponding higher moments of x(t). In this way, we can effectively

truncate the infinite set of moment equations. For instance, if we

return to the scalar example (8.6), (8.7), and if we assume k. (t) = OVi > 4
1 -

equations (8.8) and (8.9) are unchanged and (8.10) is replaced by

dm3 = [3mn(ml, m2 , m3 ) + 382m3]dt

+ r)(mI , m2 , m3 ) - m3 ml ] [dz-mldt] (8.15)

n(m ' in, m3 )= 3m2 + 4m3 12 m22 4  
(8.16)

We note that this technique can be extended to the general vector

problem (8.1), (8.2) with no conceptual, but some bookkeeping, difficulties.

For instance, the cumulants approach provides an alternative to the Fourier

series methods described in Section VII for the design of phase tracking

and demodulation systems. An open question related tothe cumulants method

is that of performance analysis -- e.g., how does performance improve as

we retain more cumulants and do we achieve the optimal performance in the

limit?



IX. Conclusions

In this paper we have discussed the practical importance and

the mathematical analysis of several classes of bilinear estimation

problems. We have seen that such mathematical models arise in a wide

variety of applications, and we refer the reader to the references for

further verification of this fact. We have also indicated how such

estimation problems can be solved. In some cases, best explained in

a Lie-theoretic framework, we have seen that finite-dimensional optimal

estimation equations can be derived. For other problems the tools of

harmonic analysis have turned out to be most appropriate and extremely

useful. Finally, a general but untried approximation method based on

the truncation of the cumulants of a random process has been described.

In conclusion, the class of stochastic bilinear systems is not only an

appealing class of systems from an applications point of view, but it

also is a highly structured class of systems for which analysis nearly

as detailed and successful as that for linear systems is possible.
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